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[1] Solar wind data from Helios 1 and 2 and from Voyager 1 and 2 are used to show that
between 0.3 and 20 AU in the ecliptic plane, the total energy per unit mass contained
in the velocity and magnetic field fluctuations decays approximately as a power law of the
form R�a, where R is the heliocentric distance in astronomical units (AU) and �0.64 �
a � �0.41. It is also shown that to the first order of approximation, this quantity is
independent of the effects of solar cycle variations. An analysis of OMNI data at 1 AU
from 1969 through 2002 shows that the Alfven ratio, the ratio of kinetic energy to
magnetic energy in the fluctuations, exhibits large solar cycle variations rising from 1 or 2
at solar maximum to 8 or 9 either near solar minimum or a couple of years before
minimum. This is due to the fact that the kinetic and magnetic energy in the fluctuations
both undergo solar cycle variations, with the kinetic energy increasing to a maximum
around solar minimum and the magnetic energy decreasing to a minimum around solar
minimum. It is found that these effects appear to offset each other so that the sum of the
kinetic plus magnetic energies does not exhibit noticeable solar cycle variations.
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1. Introduction

[2] The most well known property of turbulence in
incompressible fluids is the Kolmogorov energy spectrum
characterized by a power law exponent equal to �5/3 in the
inertial range. Another important property is the asymptotic
energy decay law

E tð Þ / t�a; ð1Þ

which describes the free decay of the turbulence after the
turbulent forcing is ‘‘turned off.’’ In equation (1), E is the
average kinetic energy of the fluid, t is the time variable,
and a is a constant (a � 1). A power law decay indicates
that the turbulent energy decays very slowly once the
forcing is removed; contrary to a smooth laminar velocity
field which decays exponentially in time proportional to
exp(�nk2t), where n is the kinematic viscosity and k is the
magnitude of the Fourier wave number. This is perhaps the
oldest and most well known property of incompressible
fluid turbulence [Frisch, 1995].
[3] Computer solutions (simulations) of the equations of

incompressible magnetohydrodynamics (MHD) show that
three-dimensional homogeneous isotropic turbulence in an
incompressible magnetofluid also decays slowly in time

with an approximate energy decay law in the nonzero
helicity case of the form

E tð Þ / t�1=2 ð2Þ

and, in the zero helicity case,

E tð Þ / t�1 ð3Þ

[Biskamp and Müller, 2000], where E is the total energy—
kinetic plus magnetic.
[4] By analogy, large-scale fluctuations in the solar wind

are expected to exhibit a radial power law decay of the form
R�a, where R is the radial distance from the sun in
astronomical units (AU). Solar wind velocity and magnetic
field fluctuations are freely decaying when separated from
their sources in the solar corona and in the solar wind
acceleration region. While being swept outward at super-
Alfvenic speeds by the solar wind, these fluctuations
undergo a radial decay that resembles the free decay of
turbulence after the sources driving the turbulence have
been removed.
[5] The simulations of Biskamp and Müller [2000] do not

provide an accurate physical model for the evolution of
solar wind turbulence because in the solar wind reference
frame the fluctuations are neither incompressible nor iso-
tropic. However, the slow power law decay seen in these
simulations is typical of the type of behavior expected in
the solar wind. The dynamics of small-scale turbulent
motions in the solar wind are approximately incompressible
[Bavassano and Bruno, 1995; Goldstein et al., 1995], even
though they are not isotropic. For this reason, models like
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that of Biskamp and Müller [2000] may be considered to
yield a rough first approximation for the evolution of solar
wind fluctuations.
[6] The purpose of this study is to use in situ measure-

ments of solar wind plasma and magnetic fields to deter-
mine the radial decay law of large-scale fluctuations in
the solar wind. This law is fundamental to the physics of
solar wind turbulence because these large-scale fluctuations
constitute the energy source for the turbulence and, conse-
quently, the energy source for turbulent heating of solar
wind plasma. The measurement of this law is difficult
because of the sparsity of solar wind data beyond the orbit
of the Earth (1 AU). As a consequence, the empirical
estimates contain significant uncertainties. In the future
when much larger data sets become available the radial
decay law will be more amenable to measurement.
[7] In this study, the term ‘‘large-scale fluctuations’’

refers to fluctuations with periods of approximately one
hour to 27 days (one solar rotation) or more, that is, from
approximately 4 � 10�7 Hz to 3 � 10�4 Hz. This
terminology was introduced by Burlaga and has been used
several times in the literature [Burlaga, 1995; Burlaga et al.
1989]. For solar wind power spectra, this range of frequen-
cies contains most of the power in the fluctuations. At these
scales the fluctuations can be considered compressible
consisting of a mixture of both fast and slow wind, shocks,
and other structures.
[8] In the ecliptic plane, during the declining phase of the

solar cycle and near solar minimum the energy in the large-
scale fluctuations is dominated by recurring streams and the
large-scale stream structure of the solar wind. During the
ascending phase of the solar cycle and near solar maximum
the stream structure almost disappears so that the fluctuating
power at these frequencies is reduced although it still
dominates the power spectrum.
[9] A brief outline of this paper is as follows. A review of

previous work is provided in section 2. The analysis
procedures and results obtained in this study are described
in section 3. The effects of solar cycle variations are
discussed in section 4 and the conclusions are presented
in section 5.

2. Previous Work

[10] The radial variation of velocity and magnetic field
fluctuations in the solar wind have been reviewed by
Roberts and Goldstein [1991] and by Roberts et al.
[1990]. Related studies of the radial evolution of solar wind
power spectra can be found in work by Marsch and Tu
[1990a, 1990b]. Further information, including references to
some of the theoretical work on this subject, can be found in
several comprehensive reviews of solar wind turbulence
including those by Marsch [1991], Goldstein et al. [1995],
Tu and Marsch [1995], and Bruno and Carbone [2005].
More recent theoretical work includes that of Zank et al.
[1996], Matthaeus et al. [1999], and Cranmer and van
Ballegooijen [2005].
[11] Empirical studies of the radial variation of large-scale

fluctuations in the solar wind based on in situ measurements
were performed by Klein et al. [1987] and by Roberts et al.
[1990]. The study by Klein et al. [1987] considered only
magnetic field fluctuations and neither study explicitly

estimated the radial variation of the total energy in the
fluctuations (kinetic plus magnetic). Klein et al. [1987] used
one day averages of the magnetic field data from Voyager 1
and Voyager 2 to compute variances in the fluctuations over
successive 26 day intervals, approximately one solar rota-
tion. According to their results the RMS power in the large-
scale magnetic field fluctuations obeys the radial power law

s2BR
’ aR�b; ð4Þ

where a = 3.82 (nT)2, b = 2.80, and 1 < R < 20 AU for
Voyager 1, and a = 4.55 (nT)2, b = 2.82, and 1 < R < 14 AU
for Voyager 2. Similarly,

s2BT
’ aR�b; ð5Þ

where a = 7.63 (nT)2, b = 2.70, and 1 < R < 20 AU for
Voyager 1, and a = 7.57 (nT)2, b = 2.68, and 1 < R < 14 AU
for Voyager 2. Here, (BR, BT, BN) are the Cartesian
components of the magnetic field vector in spacecraft
RTN coordinates. Although sBN

2 is not provided in their
paper it is reasonable to expect, on the basis of this and
previous studies, that sBN

2 ’ sBT

2 . It is important to note that
the data used to derive the fits (4) and (5) were not corrected
for possible solar cycle variations. Assuming that the
average density falls off like R�2, it follows from the results
of Klein et al. [1987] that the magnetic energy per unit mass
decreases approximately like R�0.7 from 1 to 20 AU.
[12] Roberts et al. [1990] used one hour averaged data

obtained between 0.3 and 20 AU by several different
spacecraft, including Helios and Voyager, to measure the
total power in fluctuations having periods less than or equal
to 10 days. Time series for selected data intervals were
digitally filtered to isolate the frequency band containing
periods less than 10 days and the variance of the fluctua-
tions was then computed from the filtered time series. The
results show that at the largest scales studied (10 days) the
magnetic field fluctuations roughly obey the WKB relation
var(B) / R�3 from 0.3 to 2 AU but decrease more slowly
than R�3, roughly as R�2, from 2 to �10 AU (A. Roberts,
private communication, 2005). Assuming that the average
density falls off like R�2, these results suggest that the
magnetic energy per unit mass decreases approximately like
R�1 from 0.3 to 2 AU and more slowly than R�1 from 2 to
10 AU. The Alfvén ratio decreases from around 3 at 0.4 AU
to 0.8 at 8 AU and then remains approximately constant
from 8 to 20 AU. Consequently, the kinetic energy
decreases faster than the magnetic energy between 0.3 and
8 AU. Roberts et al. [1990] did not take into account
possible effects due to solar cycle variations.

3. Measurement Methods and Results

[13] The kinetic energy per unit mass is defined by the
variance of the velocity field

EV Rð Þ ¼ 1

2
var v R; tð Þf g ¼ 1

2
jv R; tð Þ � �v Rð Þj2

D E
; ð6Þ

where v(R, t) is the velocity field, jvj2 = vx
2 + vy

2 + vz
2, �v(R) =

hv(R, t)i is the mean velocity at the point R, and the brackets
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denote the ensemble average. The stochastic process v(R, t)
is assumed to be stationary and ergodic so that, in practice,
the ensemble average is computed using a time average.
The energy per unit mass contained in the magnetic field
fluctuations is defined by

EM Rð Þ ¼ 1

2
var b R; tð Þf g ¼ 1

2
b R; tð Þ � �b Rð Þj j2

D E
; ð7Þ

where

b R; tð Þ ¼ B R; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0r R; tð Þ

p ð8Þ

is the magnetic field expressed in terms of velocity units. In
equation (8), r(R, t) is the solar wind mass density and m0 is
the permeability of free space. In this paper SI units are used
throughout. The total energy per unit mass contained in the
fluctuations is defined by

E ¼ EV þ EM : ð9Þ

[14] It is possible to use the average density �r(R) rather
than the instantaneous density r(R, t) in equation (8). This
leads to somewhat smaller values of the magnetic energy
per unit mass EM, although the radial trends are similar in
both cases. In general, the variances (6) and (7) depend not
only on the radius R but on the heliographic latitude q. The
dependence on latitude is omitted since the observations in
this study are confined to the ecliptic plane, that is, within
±7 degrees of the solar equatorial plane.
[15] Ideally, one should measure the total variance (power)

in the fluctuations at a discrete sequence of radial points
along a particular radial direction, that is, at a fixed
heliographic latitude. At each point one should obtain a
long time series of measurements spanning several solar
cycles (ideally). The variance of the time series then yields
the total power in the fluctuations

s2 Rð Þ ¼
Z 1

�1
S R; fð Þ df ; ð10Þ

where S(R, f ) is the power spectrum measured at the radial
distance R and f is the frequency in Hertz (Hz). In practice,
because the correlation time of the solar wind fluctuations is
on the order of 10 hours and most of the power is
concentrated at the large scales, it is sufficient to use a
sampling rate on the order of one to ten hours. The
minimum number of samples required to estimate the
variance from the time series data is typically on the order
of 103 to 104.
[16] Unfortunately, existing spacecraft data cannot ac-

commodate the ideal measurement scenario just described.
In practice, the spacecraft is always moving rapidly so that
one must group the data into radial bins (radial intervals). In
the case of Voyager, the spacecraft makes a single pass
during its outward bound trajectory so that the dwell time in
each radial bin is very limited. The spacecraft is moving
with a velocity of approximately 3 AU per year so that for a
radial bin size of 1 AU the time spent in each bin is only 1/3
year. This is not long enough to allow a complete sampling

of the full range of solar wind conditions over a typical solar
cycle. As a consequence, the measurements are statistically
inadequate and produce very noisy estimates of the radial
dependence of the fluctuating power.
[17] In this study, one hour averages of plasma and

magnetic field data were obtained from the NSSDC
(merged data sets) for the complete missions of Helios 1,
Helios 2, Voyager 1, and Voyager 2. The data for each
mission are sorted into radial bins and the variance is
computed separately for the data contained in each bin.
The data from each spacecraft are processed separately. The
data from Helios 1 cover the period from 1975 to 1981,
roughly from solar minimum to solar maximum of solar
cycle 21. The data from Helios 2 cover the period from 1976
to 1981. For Voyager 1, the plasma instrument failed after
1980 so only data between 1977 and 1981 are analyzed here
(1 < R < 10 AU). In the case of Voyager 2, only the data from
1977 through 1986 are used so that 1 < R < 20 AU. This is to
ensure the integrity (accuracy and reliability) of the Voyager
measurements since the plasma instruments were only
designed for 1 < R < 20 AU [Bridge et al., 1977]. More
details of the analysis methods are described below. The
results of the analysis are shown in Figures 1 and 2.

3.1. Helios Data

[18] For Helios 1 and Helios 2, the bin size is dr = 0.1 AU
and the separation between centers of adjacent bins is dr/4
so that the bins overlap each other. The mass density r of the
solar wind is computed from the measured proton number
density by assuming a fixed ratio of 24 protons to each
alpha particle, np/na = 24, so that r = 1.17mpnp, where mp is
the proton mass, np is the proton number density, and na is
the number density of alpha particles. If the average mass
density in each bin is used instead of the instantaneous
density in equation (8), then the values for the magnetic
energy per unit mass are found to be smaller than those
shown in Figure 1 by a factor of approximately 2/3; more
specifically, by factors of between 0.49 and 0.78 for Helios
1 and by factors of between 0.59 and 0.78 for Helios 2. One
more detail should be mentioned regarding the analysis of
data from Helios 1 and 2, namely, that there are roughly
twice as many data points in each velocity bin as in each
magnetic field bin; the latter is shown in Figure 1 (bottom).
This is because the simultaneous density and magnetic field
data needed for each point in the magnetic field bins are less
abundant than the number of velocity data points in each
bin.
[19] Linear least squares fits to log(E) versus log(R) yield

the relations

E Rð Þ ’ 6:84� 103 R�0:61 km=sð Þ2; ð11Þ

where 0.3 < R < 1 AU for Helios 1, and

E Rð Þ ’ 6:64� 103 R�0:52 km=sð Þ2; ð12Þ

where 0.3 < R < 1 AU for Helios 2. These are the principal
results of the analysis. A linear least squares fit to log[var(B)]
versus log(R), not shown in Figure 1, yields the relations

var Bð Þ ’ 39:3 R�2:91 nTð Þ2 ð13Þ
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for Helios 1 and

var Bð Þ ’ 35:2 R�3:13 nTð Þ2 ð14Þ

for Helios 2, where 0.3 < R < 1 AU. It is found that the
transverse components of the fluctuations in the magnetic
field are of the same order of magnitude, sBN

2 � sBT

2 � R2,
whereas the magnitude of the radial component, sBR

2 � R4, is

Figure 1. (top) Radial variation of the kinetic and magnetic energies per unit mass, (second from the
top) total energy per unit mass, (third from the top) Alfven ratio, and (bottom) number of samples in each
magnetic energy bin for (left) Helios 1 and (right) Helios 2. The dashed lines in the top plots are
proportional to 1/R. The lines on the plots for the total energy are the linear least squares fits to log(E)
versus log(R).
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roughly ten times themagnitude of the transverse components
at 0.3 AU and then decreases monotonically to become
approximately equal to that of the transverse components at
1AU (the radial dependence seen in the datamay be estimated

from the empirical relations jBRj � R�2 and jBTj � R�1

[Mariani et al., 1979] together with the assumptions jdBRj �
jBRj and jdBTj � jBTj). Assuming a density decrease
proportional to R�2, the relations (13) and (14) imply that

Figure 2. (top) Radial variation of the kinetic (blue) and magnetic (green) energies per unit mass,
(second from the top) total energy per unit mass, (third from the top) Alfven ratio, and (bottom) number
of samples in each magnetic energy bin for (left) Voyager 1 and (right) Voyager 2. Note that the total
energy is drawn on a log-log plot. The lines on the plots for the total energy are the linear least squares fit
to log(E) versus log(R).
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the magnetic energy per unit mass decreases roughly as R�1

from 0.3 to 1 AU. This is consistent with the empirical data
plotted in Figure 1 (top).
[20] For the velocity field, the variance of the radial

component is larger than the variance of the transverse
components by a factor on the order of 10 throughout the
interval from 0.3 to 1 AU. This is due to the radial stream
structure of the solar wind and the fact that the radial
velocity component dominates the kinetic energy of the
flow.

3.2. Voyager Data

[21] For Voyager 1, the radial bin size is dr = 1.5 AU and
the separation between centers of adjacent bins is dr/8. As
the speed of the spacecraft is approximately 3.3 AU per
year, each radial bin contains data spanning more than six
solar rotations. For Voyager 2, the radial bins are chosen to
have geometrically increasing bin sizes. This permits more
uniform sample sizes at all radial distances since the
increasing bin size compensates for the increasing number
of data gaps at large distances. The nth radial bin covers the
interval (an, bn), where bn = an + Dn, Dn = dln, an+1 = an +
aDn, a0 = 1 AU, and n = 0, 1, 2, 3, . . . The radial position of
the bin is equal to the midpoint of the interval. For the
analysis of Voyager 2 data, the values d = 1 AU, a = 1/3,
and l = 1 + (a/19) were chosen to obtain bin sizes that
increase from 1 AU near R = 1 AU to approximately 2 AU
near R = 20 AU. For both Voyager 1 and 2 the number of
data points in the velocity bins are approximately equal to
the number of data points in each magnetic field bin, where
the latter is shown in Figure 2 (bottom).
[22] Linear least squares fits to log(E) versus log(R) yield

the relations

E Rð Þ ’ 9:08� 103 R�0:64 km=sð Þ2; ð15Þ

where 1 < R < 10 AU for Voyager 1, and

E Rð Þ ’ 6:20� 103 R�0:41 km=sð Þ2; ð16Þ

where 1 < R < 20 AU for Voyager 2. These are the primary
results of the analysis. It should be noted that if the average
mass density in each bin is used instead of the instantaneous
density in equation (8), then it is found that for Voyager 1
the quantity var(b) is reduced by a factor of roughly 1/2 or,
more precisely, by factors ranging between 0.34 and 1.01.
Likewise, for Voyager 2, the quantity var(b) is reduced by a
factor of roughly 2/3 or, more precisely, by factors of
between 0.57 and 1.05.
[23] Linear least squares fits to log[var(B)] versus log(R),

not shown in Figure 2, yield the relations

var Bð Þ ’ 62:3 R�2:43 nTð Þ2; ð17Þ

where 1 < R < 10 AU for Voyager 1, and

var Bð Þ ’ 50:4 R�2:26 nTð Þ2; ð18Þ

where 1 < R < 20 AU for Voyager 2. In addition, it is found
that the variance of all three components of the magnetic
field have a similar radial dependence from 1 to 20 AU

(each a straight line on a log-log plot). It is found that sBT

2

dominates the power, the magnitude of sBN

2 is smaller
than sBT

2 by a factor on the order of 2 or 3, and the
magnitude of sBR

2 is smaller than sBN

2 by a factor on the
order of 2 or 3. Assuming a density decrease proportional
to R�2, the relations (17) and (18) imply that the magnetic
energy per unit mass decreases roughly like R�0.35 from 1
to 20 AU. This is consistent with the empirical data plotted
in Figure 2 (top).
[24] For the velocity field, the variance of the radial

component is larger than the variance of the transverse
components by a factor on the order of 10 throughout the
interval from 1 to 20 AU. This is expected because of
the dominant radial stream structure of the solar wind. The
variance of the transverse velocity components, the ‘T’ and
‘N’ components, are roughly equal in magnitude from 1 to
20 AU.

4. Solar Cycle Variations

[25] In this section it is shown that solar cycle variations
do not have a significant effect on the total energy per unit
mass in the large-scale fluctuations in the ecliptic plane.
The large-scale velocity and magnetic field fluctuations at
1 AU were studied using one hour average data from the
OMNI data set. The quantities EV and EM were computed
over 1/3 year intervals and the calculations were repeated
every 1/6 year. The results for the period of the Helios and
Voyager missions analyzed in this paper is shown in Figure 3.
The analysis of each solar cycle covered by the OMNI data
set between 1969 and 2002 shows a similar pattern.
[26] The kinetic and magnetic energies are nearly equal

around solar maximum with an Alfvén ratio near 1 or 2.
From solar maximum to solar minimum the magnetic
energy decreases by a factor on the order of 1/2 or 1/3
while the kinetic energy tends to increase, though less
smoothly, by a factor on the order of two or three.
Consequently, the Alfvén ratio increases from around 1 or
2 at solar maximum to around 8 or 9 near solar minimum.
The increase in the kinetic energy is due to the occurrence
of high-speed streams near solar minimum and during the
declining phase of the solar cycle, a well known effect
which is due to the occurrence of equatorial coronal holes.
[27] It is interesting that although separately the kinetic

and magnetic energies EV and EM exhibit noticeable solar
cycle variations, the total energy E does not exhibit a clearly
discernable pattern or trend. Instead, the total energy under-
goes fluctuations about its mean value. Even though the
relative fluctuations are sometimes large, the overall time
variation is trendless. This result is remarkable in light of
the large changes in the Alfvén ratio during the solar cycle.
Assuming that the solar cycle variations at any heliocentric
distance between 0.3 and 20 AU is similar to the variations
observed at 1 AU, these results suggest that to the first order
of approximation the radial dependence of the total energy
E can be estimated from the data without concern for solar
cycle effects. However, corrections due to solar cycle effects
are important when estimating the radial variation of the
Alfvén ratio. Such corrections are not attempted here. As a
consequence, the plots of the Alfven ratio in Figure 2 are
probably contaminated by solar cycle effects and therefore
are untrustworthy, while the plots of the Alfven ratio in
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Figure 1 are probably less effected because the Helios data
set spans a significant portion of the solar cycle.

5. Discussion and Conclusions

[28] The data from Helios and Voyager show that be-
tween 0.3 and 20 AU the total energy per unit mass in the
fluctuations decays approximately as a power law with an
exponent of between �0.41 and �0.64. The scatter in the
data is large so that these values contain large uncertainties,
but the fact that independent fits obtained from Helios (0.3

to 1 AU) and Voyager data (1 to 20 AU) all yield similar
exponents provides confirmation of the general trend. In
addition, the amplitudes of all the fits are found to be in
rough agreement with each other.
[29] A comparison of the results from Helios with those

from Voyager in Figures 1 and 2 shows that from 0.3 to
1 AU the kinetic energy per unit mass decays more
gradually than the magnetic energy per unit mass, whereas,
from 1 to 20 AU the kinetic energy per unit mass decays
more rapidly than the magnetic energy per unit mass—even
without corrections for solar cycle effects. This is the most
noticeable difference between the radial dependence in the
two regions R < 1 AU and R > 1 AU. One of the primary
differences in the solar wind in these two regions is that the
solar wind is still undergoing a significant radial accelera-
tion between 0.3 and 1 AU with an average velocity gain on
the order of 10%, whereas, beyond 1 or 2 AU the average
solar wind velocity is roughly constant. Assuming that the
kinetic fluctuations draw energy from the average flow only
when the average flow is accelerating, it follows that the
kinetic component of the fluctuations should decay more
gradually from 0.3 to 1 AU than from 1 AU to 20 AU. This
could explain the observed differences in the regions R < 1
AU and R > 1 AU.
[30] As one can see from Figure 1, between 0.3 and 1 AU

the magnetic energy per unit mass decays approximately
like 1/R and the kinetic energy per unit mass decays more
gradually than 1/R, that is, EM decays more rapidly than EV.
Between 1 and 20 AU, the magnetic energy per unit mass
decays more slowly than 1/R, approximately like R�1/3, and
the kinetic energy per unit mass decays more rapidly than
the magnetic energy. Thus EV decays more rapidly than EM.
As a consequence, the Alfvén ratio generally increases in
the range 0.3 < R < 1 AU and decreases in the range 1 < R <
20 AU. Note, however, that these results are effected by
solar cycle variations. In the range 0.3 < R < 1 AU the
magnetic field fluctuations var(B) decrease approximately
like R�3 while in the range 1 < R < 20 AU they decrease
approximately like R�2.35. The average density decreases
approximately like R�2 from 0.3 to 20 AU.
[31] The results for the Alfvén ratio presented in Figures 1

and 2 are consistent with those of Roberts et al. [1990]
which show that at the 10 day scale the Alfvén ratio
decreases from values on the order of 2 or 3 between 0.3
and 1 AU to values on the order of unity or less between
8 and 20 AU. The study presented here extends previous
work by utilizing a larger statistical database and providing
higher spatial resolution.
[32] The radial decay of the total energy per unit mass in

the fluctuations is roughly a power law with an exponent of
approximately �1/2. Assuming a constant flow velocity,
this agrees with the result of Biskamp and Müller [2000] for
the nonzero helicity case. This agreement is somewhat
surprising considering that the effects of volume expansion
in the solar wind are not taken into account in their
simulations. This is one area of investigation for future
research. The simulations by Biskamp and Müller [2000]
also show that, in general, EV decays faster than EM as is
found for the solar wind observations between 1 and 20 AU.
It is probably fair to say that a complete understanding of
the radial variation of the large-scale velocity and magnetic
field fluctuations in the solar wind has not yet been

Figure 3. (top) Solar cycle variations of the kinetic (blue)
and magnetic (red) energy per unit mass, (middle) total
energy per unit mass, and (bottom) the Alfvén ratio as
measured at 1 AU. Solar cycle 21 extends from solar
minimum in 1975/1976 to solar maximum in 1980 to the
succeeding solar minimum in 1986.
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achieved. There is a continuing need for further develop-
ment of theoretical models and more comprehensive in situ
measurements.
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